健康青年言语诱发听性脑干反应和听觉失匹配负波的关系

符秋养, 梁勇, 邹岸, 等. 健康青年言语诱发听性脑干反应和听觉失匹配负波的关系[J]. 临床耳鼻咽喉头颈外科杂志, 2015, 29(1): 39-44. doi: 10.13201/j.issn.1001-1781.2015.01.011
引用本文: 符秋养, 梁勇, 邹岸, 等. 健康青年言语诱发听性脑干反应和听觉失匹配负波的关系[J]. 临床耳鼻咽喉头颈外科杂志, 2015, 29(1): 39-44. doi: 10.13201/j.issn.1001-1781.2015.01.011
FU Qiuyang, LIANG Yong, ZOU An, et al. Relationships of electrophysiological characteristic between speech evoked auditory brainstem response and auditory mismatch negativity[J]. J Clin Otorhinolaryngol Head Neck Surg, 2015, 29(1): 39-44. doi: 10.13201/j.issn.1001-1781.2015.01.011
Citation: FU Qiuyang, LIANG Yong, ZOU An, et al. Relationships of electrophysiological characteristic between speech evoked auditory brainstem response and auditory mismatch negativity[J]. J Clin Otorhinolaryngol Head Neck Surg, 2015, 29(1): 39-44. doi: 10.13201/j.issn.1001-1781.2015.01.011

健康青年言语诱发听性脑干反应和听觉失匹配负波的关系

  • 基金项目:

    国家自然科学基金项目(No:61172033)

    广东省科技计划项目(No:2010B031600099)

详细信息
    通讯作者: 梁勇;  王涛,E-mail:taowang@smu.edu.cn
  • 中图分类号: R764

Relationships of electrophysiological characteristic between speech evoked auditory brainstem response and auditory mismatch negativity

More Information
    Corresponding authors: LIANG Yong ;  WANG Tao
  • 目的:探讨言语诱发听性脑干反应(s-ABR)和听觉失匹配负波(MMN)之间的电生理关系,提供更多言语认知形成机制的神经电生理知识。方法:记录33例(33耳)健康成年人80 dB HL强度的s-ABR和1kHz频域差异以及40 dB强度差异的MMN,分析s-ABR主波潜伏期和基频(F0)幅值、第一共振峰(F1)幅值与频率差异MMN(fd-MMN)潜伏期和强度差异MMN(md-MMN)潜伏期的关系。结果:fd-MMN潜伏期与s-ABR瞬态性成分呈负相关,而与周期性成分呈正相关。在与md-MMN潜伏期的相关性中,s-ABR的V波、A波和D波潜伏期呈正相关,其他主波潜伏期以及F0幅值和F1幅值呈负相关。s-ABR只有F波潜伏期与fd-MMN潜伏期以及F0幅值与md-MMN潜伏期呈显著中等程度相关。结论:fd-MMN神经元与s-ABR瞬态性成分神经元可能频率特性不匹配,而与s-ABR周期性成分神经元可能频率特性相匹配。在强度特性上,md-MMN神经元可能也与s-ABR不同成分神经元具有对应的匹配和不匹配。这些生理特点可能为言语认知形成机制的后续研究提供有价值的线索。
  • 加载中
  • [1]

    RUSSO N, NICOL T, MUSACCHIA G, et al. Brainstem responses to speech syllables[J]. Clin Neurophysiol, 2004, 115:2021-2030.

    [2]

    JOHNSON K L, NICOL T G, KRAUS N. Brain stem response to speech:a biological marker of auditory processing[J]. Ear Hear,2005, 26:424-434.

    [3]

    SKOE E, KRAUS N. Auditory brain stem response to complex sounds:a tutorial[J]. Ear Hear, 2010, 31:302-324.

    [4]

    JANE H, ERICA K, NINA K. Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children[J]. Hear Res,2012, 284:52-58.

    [5]

    JAFARI Z, MALAYERI S. Effects of congenital blindness on the subcortical representation of speech cues[J]. Neuroscience,2014, 258:401-409.

    [6]

    MOHSEN A, AKRAM P, AMIR H J, et al. Effects of stimulus presentation mode and subcortical laterality in speech-evoked auditory brainstem responses[J]. Int J Audiol,2014, 53:243-249.

    [7]

    TURGEON C, LAZZOUNI L, LEPORE F, et al. An objective auditory measure to assess speech recognition in adult cochlear implant users[J]. Clin Neurophysiol, 2014, 125:827-835.

    [8]

    AARON C M, JYOTI B, BRADLEY D W, et al. Neurophysiology of spectrotemporal cue organization of spoken language in auditory memory[J]. Brain Lang,2014,130:42-49.

    [9]

    ZHANG Y, SUGA N, YAN J. Corticofugal modulation of frequency processing in bat auditory system[J].Nature,1997, 387:900-903.

    [10]

    SUGA N,GAO E,ZHANG Y,et al.The corticofugal system for hearing:recent progress[J]. Proc Natl Acad Sci USA, 2000, 97:11807-11814.

    [11]

    SAKAI M, SUGA N. Centripetal and centrifugal reorganizations of frequency map of auditory cortex in gerbils[J].Proc Natl Acad Sci USA,2002,99:7108-7112.

    [12]

    符秋养,梁勇,苏园园,等.健康青年人言语诱发听性脑干反应的成分及特性[J]. 中华耳鼻咽喉头颈外科杂志, 2009, 44(11):900-905.

    [13]

    AKHOUN I, MOULIN A, JEANVOINE A, et al. Speech auditory brainstem response (speech ABR) characteristics depending on recording conditions, and hearing status:an experimental parametric study[J]. J Neurosci Methods,2008,175:196-205.

    [14]

    SRIDHAR K, JENNIFER F, CASEY R, et al. A case study of the changes in the speech-evoked auditory brainstem response associated with auditory training in children with auditory processing disorders[J]. Int J Pediatric Otorhinolaryngol, 2013,77:594-604.

    [15]

    NÄÄTÄNEN R. Mismatch negativity (MMN):perspectives for application[J].Int J Psychophysiol,2000,37:3-10.

    [16]

    MOLHOLM S, MARTINEZ A, RITTER W, et al. The neural circuitry of pre-attentive auditory change-detection:an fMRI study of pitch and duration mismatch negativity generators[J]. Cerebral Cortex,2005,15:545-551.

    [17]

    LIU Y, SHEN X, ZHU Y, et al. Mismatch negativity in paranoid, schizotypal, and antisocial personality disorders[J]. Clin Neurophysiol,2007,37:89-96.

    [18]

    YAGO E, CORRAL M J, ESCERA C.Activation of brain mechanisms of attention switching as a function of auditory frequency change[J]. Neuroreport,2001,12:4093-4097.

    [19]

    周娜, 郭明丽, 于黎明, 等. 不同频率与强度差值对正常人错配负反应的影响[J]. 中国耳鼻咽喉头颈外科, 2007, 14(10):575-577.

    [20]

    陈琢,王宁宇,李金兰,等.健康青年人失匹配负波的提取及刺激偏差对波形的影响[J].中华耳鼻咽喉头颈外科杂志, 2009, 44(3):182-187.

    [21]

    PURCELL D W, JOHN S M, SCHNEIDER B A, et al. Human temporal auditory acuity as assessed by envelope following responses[J]. J Acoust Soc Am,2004,116:3581-3593.

    [22]

    AKHOUN I, GALLEGO S, MOULIN A, et al. The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme/ba/in normal-hearing adults[J]. Clin Neurophysiol, 2008, 119:922-933.

    [23]

    YAN J, EHRET G. Corticofugal modulation of midbrain sound processing in the house mouse[J]. Eur J Neurosci, 2001, 16:119-128.

    [24]

    JEN P H, ZHOU X M. Corticofugal modulation of amplitude domain processing in the midbrain of the big brown bat, Eptesicus fuscus[J]. Hear Res, 2003, 184:91-106.

    [25]

    MA X F, SUGA N.Plasticity of bat's central auditory system evoked by focal electric stimulation of auditory and/or somatosensory cortices[J]. J Neurophysiol,2001, 85:1078-1087.

  • 加载中
计量
  • 文章访问数:  28
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2014-10-24

目录